首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1456篇
  免费   141篇
  2021年   19篇
  2020年   11篇
  2019年   12篇
  2018年   16篇
  2017年   19篇
  2016年   34篇
  2015年   51篇
  2014年   81篇
  2013年   68篇
  2012年   92篇
  2011年   86篇
  2010年   66篇
  2009年   51篇
  2008年   78篇
  2007年   84篇
  2006年   78篇
  2005年   88篇
  2004年   89篇
  2003年   58篇
  2002年   56篇
  2001年   50篇
  2000年   65篇
  1999年   44篇
  1998年   22篇
  1997年   14篇
  1996年   14篇
  1995年   12篇
  1994年   15篇
  1993年   7篇
  1992年   28篇
  1991年   28篇
  1990年   22篇
  1989年   22篇
  1988年   18篇
  1987年   18篇
  1986年   12篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1981年   6篇
  1980年   6篇
  1979年   6篇
  1978年   7篇
  1977年   5篇
  1976年   7篇
  1975年   3篇
  1973年   2篇
  1968年   2篇
  1965年   3篇
  1959年   2篇
排序方式: 共有1597条查询结果,搜索用时 15 毫秒
51.
Familial hypercholesterolemia (FH) is a genetic disorder with an increased risk of early-onset coronary artery disease. Although some clinically diagnosed FH cases are caused by mutations in LDLR, APOB, or PCSK9, mutation detection rates and profiles can vary across ethnic groups. In this study, we aimed to provide insight into the spectrum of FH-causing mutations in Koreans. Among 136 patients referred for FH, 69 who met Simon Broome criteria with definite family history were enrolled. By whole-exome sequencing (WES) analysis, we confirmed that the 3 known FH-related genes accounted for genetic causes in 23 patients (33.3%). A substantial portion of the mutations (19 of 23 patients, 82.6%) resulted from 17 mutations and 2 copy number deletions in LDLR gene. Two mutations each in the APOB and PCSK9 genes were verified. Of these anomalies, two frameshift deletions in LDLR and one mutation in PCSK9 were identified as novel causative mutations. In particular, one novel mutation and copy number deletion were validated by co-segregation in their relatives. This study confirmed the utility of genetic diagnosis of FH through WES.  相似文献   
52.
Kim  Bo Kyung  Joo  HuiTae  Song  Ho Jung  Yang  Eun Jin  Lee  Sang Hoon  Hahm  Doshik  Rhee  Tae Siek  Lee  Sang H. 《Polar Biology》2015,38(3):319-331
Polar Biology - To better estimate annual primary production in the Amundsen Sea, which is one of the highest productivity regions in the Southern Ocean, the seasonal variations in carbon and...  相似文献   
53.
54.
Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50–55°C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55°C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35°C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55°C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.  相似文献   
55.
56.
The quantification of apoptotic cells is an integral component of many cell-based assays in biological studies. However, current methods for quantifying apoptotic cells using conventional random cultures have shown great limitations, especially for the quantification of primary neurons. Randomly distributed neurons under primary culture conditions can lead to biased estimates, and vastly different estimates of cell numbers can be produced within the same experiment. In this study, we developed a simple, accurate, and reliable technique for quantifying apoptotic neurons by means of micropatterned cell cultures. A polydimethylsiloxane (PDMS) microstencil was used as a physical mask for micropatterning cell cultures, and primary granular neurons (GNs) were successfully cultured within the micropattern-confined regions and homogeneously distributed over the entire field of each pattern. As compared with the conventional method based on random cultures, the micropatterned culture method allowed for highly reproducible quantification of apoptotic cells. These results were also confirmed by using GNs derived from mice with neurodegeneration. We hope that this micropatterning method based on the use of a PDMS microstencil can overcome the technical obstacles existing in current biological studies and will serve as a powerful tool for facilitating the study of apoptosis-involved diseases.  相似文献   
57.
The monogonont rotifer, Brachionus ibericus (S type), is considered to be a promising model species for developmental biology, evolution, and environmental genomics. In an attempt to accelerate the molecular understanding of B. ibericus, we sequenced 680.5 Mb of genomic DNA using the genome sequencer GS-FLX-Titanium. We obtained 2,062,621 reads (average read length 329.9 bp) and 145,418 contigs (total contigs length 125.7 Mb) after excluding small reads (less than 200 bp) from the assembly, and finally obtained 10,133 unigenes (E value ?? 9.00E?04) after non-redundant (NR) BLAST search. In this article, we summarize the genomic DNA sequences of B. ibericus and discuss their potential use in the study of reproductive biology, endocrinology, environmental genomics, and ecotoxicological studies, and for providing insight into the genetic basis of mechanisms such as egg formation, antioxidant stress defense, and xenobiotic metabolism.  相似文献   
58.
The functional expression of proteins on the surface of bacteria has proven important for numerous biotechnological applications. In this report, we investigated the N-terminal fusion display of the periplasmic enzyme β-lactamase (Bla) on the surface of Escherichia coli by using the translocator domain of the Pseudomonas putida outer membrane esterase (EstA), which is a member of the lipolytic autotransporter enzymes. To find out the transport function of a C-terminal domain of EstA, we generated a set of Bla-EstA fusion proteins containing N-terminally truncated derivatives of the EstA C-terminal domain. The surface exposure of the Bla moiety was verified by whole-cell immunoblots, protease accessibility, and fluorescence-activated cell sorting. The investigation of growth kinetics and host cell viability showed that the presence of the EstA translocator domain in the outer membrane neither inhibits cell growth nor affects cell viability. Furthermore, the surface-exposed Bla moiety was shown to be enzymatically active. These results demonstrate for the first time that the translocator domain of a lipolytic autotransporter enzyme is an effective anchoring motif for the functional display of heterologous passenger protein on the surface of E. coli. This investigation also provides a possible topological model of the EstA translocator domain, which might serve as a basis for the construction of fusion proteins containing heterologous passenger domains.  相似文献   
59.
An expression vector was constructed to overproduce a maltose binding protein (MBP)-esterase fusion protein in Escherichia coli. Soluble fusion protein was separated by centrifugation after cell disruption. The fusion protein was partially purified with amylose resin. The higher concentration of fusion protein (above 2 mg/ml) did not show any activity but about 0.3 mg/ml of fusion protein had the highest activity (142 U/ml). It is due to the difficulty of contact between substrate and active site of enzyme in compact form at high concentration. The fusion protein over-expressed could not be separated into MBP and esterase by the action of protease ‘Factor Xa’. The esterase could be cleaved from MBP fusion protein by the treatment of SDS with the Factor Xa, and the resulting esterase activity was increased to 34% after cleavage.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号